Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping
نویسندگان
چکیده
We present direct numerical simulations results of vortex-induced vibrations of a freely vibrating rigid cylinder with low mass-damping parameter using a spectral/hp element method. We investigate several reduced velocities to assess the validity of the ‘‘three-branch response’’ and its sensitivity to Reynolds number in the range 1000–3000. This study addresses the numerical challenge of capturing large amplitude responses in the upper branch and the 2P vortex shedding mode in the lower branch, which has been observed in experiments. We focus, in particular, on the region of reduced velocities around the mode transition between the upper and the lower branch of response. In this region, there exists a sharp drop in the spanwise correlation of the wake and forces, which, surprisingly, does not diminish the response of the cylinder. Therefore, detailed measurements of the phasing along the span are crucial to understanding the system and its mechanism for vortex mode selection. We use complex demodulation analysis to quantify the spatiotemporal phase relationship between the forces and cylinder displacement. We also compute the correlation length of the forces along the span of the cylinder. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
The Lock-in Phenomenon in VIV using A Modified Wake Oscillator Model for both High and Low Mass-Damping Ratio
In the present paper the behavior of an elastically mounted cylinder in low and high mass-damping ratio is investigated. For high mass-damping ratio, a classical wake oscillator model is used. At the first, by neglecting all damping and nonlinear terms of this model, the possibility of using a linear model for determination of the lock-in range and the dominant mode is investigated. Then, w...
متن کاملVIV of Tapered Cylinders: 3D LES Numerical Simulation
In the present study, the author’s previous experimental investigations on the vortex induced vibration of uniform and tapered circular cylinders are numerically simulated. The circular cylinders have medium mass ratios (5.93, 6.1), low mass-damping parameters (0.0275, 0.0279) a mean diameter of 0.028m and an aspect ratio of about 14. A fully coupled two-way fluid-structure interaction (FSI) an...
متن کاملGalloping and VIV control of square-section cylinder utilizing direct opposing smart control force
An adaptive fuzzy sliding mode controller (AFSMC) is adopted to reduce the 2D flow-induced vibration of an elastically supported square-section cylinder, free to oscillate in stream-wise andtransverse directions in both lock-in and galloping regions. The AFSMC strategy consists of a fuzzy logic inference system intended to follow a sliding-mode controller (SMC), and a robust control syste...
متن کاملNumerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code
This study numerically investigates the vortex-induced vibration (VIV) of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re) = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass...
متن کاملOtc 11998
Vortex-induced vibration (VIV) of a long riser in sheared current is often considered as an energy balance problem: Excitation forces in the power-in region add an equal amount of energy to the system as is dissipated by damping forces outside this region and structural damping. A riser may have different excitation and damping regions depending on the actual oscillation frequency, cross-sectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005